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Abstract. Inspired by the recent success of self-supervised contrastive
pre-training on ImageNet, this paper presents a novel framework of Su-
pervised Contrastive Pre-training (SCP) followed by Supervised Fine-
tuning (SF) to improve mammographic triage screening models. Our ex-
periments on a large-scale dataset show that the SCP step can effectively
learn a better embedding and subsequently improve the final model per-
formance in comparison with the direct supervised training approach.
Superior results of AUC and specificity/sensitivity have been achieved
for our mammographic screening task compared to previously reported
SOTA approaches.
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1 Introduction

Mammographic screening is a cost-effective method for early detection of breast
cancer, with approximately 39 million mammograms performed annually in
the United States [1]. It has been reported that the U.S. radiologists ranged
from 66.7% to 98.6% for sensitivity and from 71.2% to 96.9% for specificity
in mammogram-based breast cancer diagnosis [19]. While many previous works
proposed deep learning (DL) models to identify cancer patients and help improve
the radiologists’ performance [21], in this paper, we focus on training DL models
to triage a portion of mammograms as cancer-free to reduce radiologists’ work-
load, and therefore improve their efficiency and specificity, without sacrificing
sensitivity.

Unlike the previous deep neural nets (DNN)-based mammographic screen-
ing systems, which are trained directly by supervised learning [4, 16, 20, 21, 25],
we propose a Supervised Contrastive Pre-training + Supervised Fine-tuning
(SCP+SF) framework. It first performs the SCP pre-training through a carefully
designed Siamese contrastive learning module, searching for an ideal embedding
space, then transfers the pre-trained encoder to the SF module for the supervised
fine-tuning phase.
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Fig. 1. Visualization of the normal and abnormal sample projections. (a)(b) are from
the Siamese contrastive learning module, and (c)(d) are from the final dual-view model.

Contrastive learning has been applied to self-supervised visual representation
learning [6,7,10,11,29], exemplified by the recent success of SimCLR/SimCLR-
v2 [6,7], which shows that self-supervised pre-training on ImageNet with a simple
contrastive learning framework can generate competitive results on downstream
image classification tasks comparing with fully supervised learning. The follow-
up work [14] shows that contrastive pre-training can also be applied to supervised
settings and further improve the SOTA performance on ImageNet.

Contrastive pre-training is fundamentally a guided clustering process with
the objective of learning an embedding space to better separate the samples
from different classes, and in turn, the following supervised fine-tuning can be
carried out more effectively.

In this paper, we demonstrate that the proposed SCP+SF framework can be
effectively applied to medical imaging and boost the performance of the triage
screening task. Fig. 1a and 1b (best viewed in color) visualize the sample projec-
tions from the proposed contrastive learning module before and after the SCP
phase, clearly illustrating the improvement in the separability of the two clusters
representing the healthy and at-risk populations. Fig. 1c and 1d are the sample
projections from our proposed dual-view model, with the direct supervised learn-
ing, and with the proposed SCP+SF training framework, further demonstrating
that the SCP+SF results in better clustering quality.

Our experiments show that when trained on our in-house dataset of 134,488
images from 30,487 patients and tested on 2,538 images from 640 patients with
biopsy-proven ground truth, our screening models trained with SCP+SF surpass
the previously reported SOTA approaches [21,28,30] by a large margin, in terms
of AUC and specificity/sensitivity.

The main contributions of this paper include: 1) we present a novel frame-
work of SCP+SF, with a carefully designed Siamese contrastive learning module,
including details of the network architecture and loss design, and 2) we show that
for our mammographic triage screening task, models trained with SCP+SF con-
sistently outperform their directly supervised counterparts and achieve superior
performance over previously reported SOTA approaches.
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2 Related Work

Contrastive pre-training Most contrastive pre-training works have been con-
ducted within the realm of self-supervised learning on ImageNet data [2,6,7,10,
11,23,29,31], involving different forms of contrastive loss [9]. The recent work of
SimCLR-v2 [7] shows that self-supervised contrastive pre-training can compete
with its fully supervised counterpart after fine-tuning on downstream tasks. The
work of SupCon [14] generalizes the contrastive loss to the supervised setting.
In medical imaging, the work of [12] proposes to carry out self-supervised con-
trastive pre-training at both global and local levels on the Magnetic Resonance
Imaging (MRI) dataset before fine-tuning for MRI image segmentation.

Mammographic screening Previous works on deep learning based mam-
mographic screening include two types of triage tasks: 1) identifying the healthy
patients to reduce workload [16,17,25,30], and 2) identifying the mammograms
with malignant findings [4,13,21,26–28]. We focus on the first task in this paper
and treat the BI-RADS 14 category mammograms as healthy/normal.

Most of the above screening methods take the direct supervised learning ap-
proach, except for [28], which pre-trained the screening model on a large amount
of data with BI-RADS labels before fine-tuning it with biopsy ground truth.
However, this pre-training phase is not based on the contrastive learning princi-
ple, therefore different from our approach.

In particular, the approach in [30] is a classic single-view based method, and
the approaches in [21,28] represent the latest SOTA multi-view mammographic
screening methods. All three approaches have been tested on large-scale datasets.
Therefore they are selected for comparison with our proposed method in Sec. 5.

3 Method

SCP+SF framework The overall architecture of the SCP+SF framework is
illustrated in Fig. 2. The Siamese contrastive learning module is designed to carry
out the SCP phase, and the resulting Siamese encoders are then transferred to
the single-view learning module and the dual-view learning module to continue
the SF phase, respectively, as shown by the magenta arrows in Fig. 2. We further
elaborate on both phases in the following subsections.

SCP phase The SCP phase is carried out by the Siamese contrastive learning
module, which consists of a Siamese encoding block and a Siamese projection
block. In the encoding block, one pair of the input mammographic images are
simultaneously fed into the shared-weight encoders. The encoded features are
then projected into a lower dimensional space by max-pooling and 1×1 conv
operations before flattened into two 1-dimensional vectors. The 1-D vectors are
further reduced to 2×1 output vectors through fully connected layers and sigmoid
operation, representing the likelihood for each class.

4Details regarding the BI-RADS standard can be found in [8].
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Fig. 2. The architecture of SCP+SF framework, consisting of the Siamese contrastive
learning module and SF modules for both the single-view and the dual-view model.

The contrastive loss [9] is designed to draw the samples from the same class
closer and separate the samples from different classes farther apart in the pro-
jected space. Given a pair of input images (I, I ′), we use the regular L2 distance
in the loss function and set margin as 1:

L(I, I ′) =

{
D2 if lI = lI′

max (0,margin−D)
2

if lI 6= lI′ ,
(1)

where

D = ‖Psia(Esia(I))− Psia(Esia(I ′))‖L2 , (2)

and Esia(·) and Psia(·) denote the Siamese encoder block and nonlinear projection
block, respectively; lI and lI′ indicate the corresponding BI-RADS labels. The
loss for a batch of N image pairs can be simply defined as Lbatch =

∑N
i=1 L(Ii, I

′
i).

Other types of loss function (e.g., inner product based) as in [6, 14] are also
experimented and compared in Sec 5. The SCP phase is completed once the
training of this module ends.
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SF phase Each mammogram typically includes four views, the left and right
craniocaudal (LCC/RCC), and mediolateral-oblique (LMLO/RMLO), and the
triage screening model can take one or multiple views as input.

Single-view model The Single-view learning module in Fig. 2 illustrates the
network architecture of the single-view model. During the SF phase, its encoder
block is directly transferred from the Siamese encoding block trained in SCP
phase and kept intact, while the projection block after the encoder is fine-tuned
based on the regular cross-entropy loss.

Dual-view model In practice, radiologists routinely identify the abnormal-
ities through bilateral analysis of mammography image pairs (i.e., LCC/RCC,
or LMLO/RMLO). Therefore we also experimented with the bilateral views as
the input for a dual-view model, in addition to the single-view model.

The Dual-view learning module in the SF phase comprises a dual-view based
input structure, a Siamese encoder, and a projection block, as shown in Fig. 2.
Since our screening model output is for each image, we designate one image of
the bilateral pair as the main input, and the other image serves as the auxiliary
input. For the example shown in Fig. 2, the LCC view is the main input, and the
RCC view from the same patient serves as the auxiliary input. The RCC input
will first be registered and warped according to the LCC view before being fed
into the shared-weight pre-trained encoder, in tandem with the LCC view. The
output encoded features are then concatenated before being projected into a
lower dimension and further reduced to a 2×1 vector. Similar to the single-view
model, the encoder block of the dual-view model is directly transferred from the
SCP phase and fixed during the SF phase.

Sample selection strategy During supervised contrastive learning, a batch
of images is first randomly selected from the training set, and then the pos-
itive and negative pairs are identified according to the sample labels within
this selected batch [14]. Limited by the affordable batch size, we experimented
with two slightly different sampling strategies. One method is random sampling,
where the training batch includes N pairs of positive and negative image pairs
directly sampled from the entire training set with the corresponding labels. Since
our dual-view model takes input from a pair of images from the same patient,
we also experimented with a patient-constrained sampling method, where each
randomly sampled positive or negative pair must come from the same patient.

4 Experiment Design

Our triage screening task aims to identify normal mammograms (BI-RADS 1)
with near-perfect accuracy in physical screening scenario. Patients with any sus-
picious regions in the breasts should not be screened out as normal patients. This
task can be further defined as a binary classification problem of BI-RADS 1
(normal/healthy) vs. other BI-RADS categories (abnormal). The majority of
screening mammograms belongs to BI-RADS 1, and thus screen them off can
assist radiologists to reduce their workload.
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Table 1. Number of mammography images in each BI-RADS category.

Abnormal
Subtotal Normal Total

BI-RADS 2 3 0 4 5 6 1

Train & Val 35290 14508 1570 3288 732 174 55562 78926 134488
Test 728 226 136 88 6 8 1192 1346 2538

Datasets Our data for training and validation is collected from three col-
laborative hospitals at distinct geographical locations using Siemens and Giotto
equipment in accordance with the ACR standard (American College of Radiol-
ogy) and dated from 2011 to 2018 5. This dataset contains both image data and
diagnosis reports that are all from screening exams. It includes 30,487 patients,
among which 13,931 patients have at least one breast diagnosed as abnormal
(other than BI-RADS 1), and 16,556 patients have both breasts diagnosed as
normal (BI-RADS 1). Our test set includes 640 patients collected within 31 con-
secutive days (March 2019) from one of those three hospitals, among which 405
patients have at least one breast diagnosed as abnormal, and 235 patients have
both breasts diagnosed as normal. Mammograms in test set come with biopsy
proven malignancy results. Table 1 shows the number of images in each BI-RADS
category for these two datasets. For abnormal cases, the BI-RADS categories are
listed by increasing risk level, where BI-RADS 0 is often regarded as between
BI-RADS 3 and 4 by radiologists [3, 22]. In the literature [21, 28, 30], mammo-
graphic screening models have been developed and tested only with large-scale
private datasets conforming to the realistic patient distribution. Public datasets
like DDSM [18] have BI-RADS 1 patients’ data marked as ’normal’. But they
account for less than 30% of the complete dataset, of which the data distri-
bution is not consistent with screening mammography scenarios. Other public
mammography datasets either contain no BI-RADS 1 patients’ data or only
have diagnostic mammograms (when a screening mammogram does show an ab-
normality, a diagnostic mammogram may be needed). Since no similar public
dataset is available, we follow the convention and perform experiments on our
own large-scale datasets.

Implementation details 6 The dataset is split into the training and vali-
dation sets by 8:1 ratio. All input images are resized to 1008 × 800 and retain
the original aspect ratio. The SCP and SF phases share the following training
parameter settings. The initial learning rate is 1×10−5 with 4 warming-up steps
and reduced to 1 × 10−6 after 100 epochs. Adam is used [15], with a weight
decay of 5× 10−4. Two NVIDIA V100 GPUs (16G memory each) are used, and
the batch size for contrastive learning is set to 6 due to the computation limit.
The model training normally completes within 300 epochs. Our final model’s
runtime is less than 3 seconds on our machine. One limitation is the model does

5This retrospective case-control study was approved by the ethics review and institu-
tional review board, which waived the requirement for individual informed consent.

6All implementation is with python3.7 and pytorch 1.1.0.
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Table 2. Performance comparison of different approaches on the triage screening task.
SCP+SF(R) refers to SCP with random sample selection and SCP+SF(P) indicates
SCP with patient-constrained sample selection as in Sec. 3. SV, DV and 4V stand
for single-view, dual-view and 4-view method, respectively. The last column shows the
number of incorrectly screened abnormal images with a breakdown according to their
BI-RADS levels (in the order of 2, 3, 0, 4, 5, 6). The 95% confidence intervals (CI) are
shown in the square brackets.

Method AUC

Sensitivity = 20%

Specificity

# of incorrectly
screened out images

out of 1192
abnormal images

[30] SV (2019) 0.8438 [.8418, .8462] 0.9723 [.9687, .9753] 33 (10, 8, 12, 2, 0, 1)
[28] 4V (2019) 0.8702 [.8676, .8734] 0.9773 [.9749, .9797] 27 ( 9, 8, 9, 1, 0, 0)
[21] 4V (2020) 0.8617 [.8544, .8696] 0.9765 [.9737, .9793] 28 ( 8, 12, 7, 1, 0, 0)

SV 0.8349 [.8329, .8373] 0.9715 [.9691, .9741] 34 ( 7, 9, 14, 2, 1, 1)
SV SCP+SF(R) 0.8518 [.8492, .8550] 0.9757 [.9743, .9771] 29 ( 7, 9, 11, 2, 0, 0)
SV SCP+SF(P) 0.8429 [.8368, .8490] 0.9748 [.9712, .9784] 30 (10, 6, 11, 2, 0, 1)
DV 0.8554 [.8528, .8580] 0.9765 [.9747, .9783] 28 ( 7, 8, 12, 1, 0, 0)
DV SCP+SF(R) 0.8805 [.8746, .8864] 0.9799 [.9780, .9818] 24 ( 9, 5, 10, 0, 0, 0)
DV SCP+SF(P) 0.9040 [.9001, .9079] 0.9832 [.9816, .9850] 20 (7, 5, 8, 0, 0, 0)

require GPU to run, and it has not been fully tested on data outside our collab-
orators. For comparison purposes, we re-implemented methods as in [21, 28, 30]
and applied them to our datasets.

Evaluation metric Since the goal is to screen out a portion of normal mam-
mograms with near-perfect accuracy, we set the sensitivity (recall rate of normal
images) at 20%, which is commonly used in clinical studies for mammogram
triage screening [30], and compare the specificity rate (percentage of correctly
classified abnormal images) of different approaches. In addition, AUC is used to
compare the overall performance of the classification models.

5 Experimental Results

Table 2 shows the performance comparison of the triage screening task with
different approaches, where Yala [30], Wu [28] and McKinney [21] are all previous
SOTA models, alongside our proposed single-view and dual-view models with
different SCP+SF training strategies. We also scrutinize the number of abnormal
images that are incorrectly screened out from the 1,192 abnormal images in the
test set, and further break it down according to the BI-RADS level.

Effectiveness of SCP+SF As shown in Table 2, for both single-view and
dual-view models, the SCP+SF framework effectively improves the overall per-
formance of the models, including the AUC and the specificity at given sensi-
tivity (20%). In turn, the number of total incorrectly screened abnormal images
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Before the SCP phase

After the SCP phase

Fig. 3. Visualization of the normal (BI-RADS 1) and abnormal (other BI-RADS) sam-
ple projections from the test set data before (top-left) and after (bottom-left) the SCP
phase, along with 6 samples and their corresponding images.

is reduced. In addition, for the dual-view model, the SCP+SF framework can
completely remove the error made for BI-RADS 4,5,6 images, which is critical
in practice since those images often correspond to higher cancer risk. In general,
most misclassified abnormal mammograms are due to small scattered benign
calcifications, which are occasionally misclassified into BI-RADS 1 category. For
the single-view model, the SCP+SF framework can also reduce the error for
BI-RADS 5,6 images to near zero. We further confirm from the separate biopsy
reports that the incorrectly screened images from the dual-view methods with
SCP+SF do not include any malignant findings.

Compared with the previous SOTA approaches, our single-view model with
SCP+SF and random sample selection generates the best single-view perfor-
mance. Our dual-view model trained with SCP+SF and patient-constrained
sample selection generates the best result overall, outperforming Wu [28] and
McKinney [21], which are both 4-view based models. At higher sensitivity, such
as 0.8, our SCP+SF with patient-constrained sample selection method improves
the specificity from 0.805 to 0.858 comparing to our vanilla dual view model.

Fig. 3 shows that the normal and abnormal sample projections from the
Siamese contrastive learning module on the test data are much better clustered
after the SCP phase, further illustrating its efficacy. Three sample images from
each class are also given.

Regarding sample selection strategy, the patient-constrained sampling fur-
ther improves the dual-view model over the random sampling method, while
random sampling is slightly better than the patient-constrained sampling for
the single-view model, both are consistent with our expectation.
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Table 3. Ablation study on different encoders and contrastive loss.

Loss Inner Product L2 Loss

Encoder ResNet-22 ResNet-34 ResNet-50 ResNet-22

AUC 0.9031 0.9013 0.8993 0.9040
Specificity (Sen.=20%) 98.23% 98.15% 98.15% 98.32%

Ablation study on SCP Table 3 shows the ablation study results. For the
backbone, there is no significant difference in terms of the size of ResNet on our
task, and ResNet-22 (as in [28]) is selected to serve our encoder. For the loss
function, the inner product distance gives a comparable result (slightly worse)
as the L2 distance we use in the contrastive loss.

6 Conclusions

We present a novel framework of Supervised Contrastive Pre-training followed by
Supervised Fine-tuning (SCP+SF) for mammographic triage screening task. Our
experiments with a total of 137,026 images have demonstrated that the SCP+SF
framework substantially improved the final model performance, comparing with
the direct supervised training. Superior results have also been achieved in com-
parison with previously reported SOTA approaches. One limitation of this study
is that we only applied regular L2 distance for contrastive loss calculation. We
plan to experiment with other loss functions, such as triplet loss [5] and mag-
net loss [24] fomulations. We also plan to apply the SCP+SF approach to other
medical imaging classification tasks in the future.
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3. Castells, X., Torá-Rocamora, I., Posso, M., Román, M., Vernet-Tomas, M.,
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