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Abstract. Calcification is one of the most common and important le-
sions in mammograms, and a higher BI-RADS category indicates a higher
cancer risk. In this paper, we present the first deep learning-based six-
class BI-RADS classification for each individual calcification in mammo-
grams. We propose an attention ROI generation strategy to highlight
calcification features. Moreover, by incorporating malignancy informa-
tion, the designed new loss function effectively boosts the performance
of the model. We also design a novel evaluation metric for BI-RADS
classification, which considers the severity of malignancy. Experimental
results have demonstrated the superior classification performance of the
proposed approach to the competing methods.
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1 Introduction

According to the World Health Organization, breast cancer became the most
commonly diagnosed type of cancer worldwide, with 2.3 million cases in 2020,
surpassing the number of new cases of lung cancer for the first time. Breast cancer
now accounts for 11.7% of all new annual cancer cases globally [20]. Mammogra-
phy is the best and widely used approach for early detection of breast cancer [4],
with about 39 million mammograms performed each year in the United States.

Breast calcifications are common findings on mammograms. While most
breast calcifications are benign (noncancerous), some calcification patterns, such
as tight clusters with irregular shapes and fine appearance, may indicate breast
cancer or precancerous changes in breast tissue. To assess the cancer risk and as-
sure the imaging quality, the American College of Radiology has established the
Breast Imaging-Reporting and Data System (BI-RADS) [1]. BI-RADS category
or level reporting enables radiologists to standardize mammogram interpreta-
tion and demonstrates a close correlation with the risk of breast malignancy:
1-healthy, 2-benign, 3-probably benign, 4-suspicious abnormality, 5-highly sus-
picious of malignancy, 6-biopsy proven malignant.
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Despite the recent advances in deep neural networks (DNN)-based approaches
for computer-aided diagnosis/detection (CADx/CADe) in mammography [6,11–
14, 21–23], automated BI-RADS categorization of breast calcifications with ro-
bust performance remains a challenging issue, due to the fuzzy nature of the
calcifications. Previous works either classified calcifications simply as benign or
malignant [17], or classified them into incomplete BI-RADS categories. For ex-
ample, Avalos-Rivera et al. [2] developed an artificial neural network to classify
calcification ROIs (Region of Interest) into BI-RADS categories of 2, 3, and 4
(ignored 5), which does not meet the current BI-RADS standard. Some existing
works have studied the BI-RADS categorization of whole mammographic im-
ages [7, 10, 18] instead of individual lesions or a certain lesion type (e.g., mass
or calcification), which posed significant difficulties on the interpretability of the
CADx/CADe system. Generally, radiologists evaluate each lesion in the breast
and report the largest BI-RADS score for the breast. Hence, BI-RADS cate-
gory prediction at the lesion-level is more advantageous to assist radiologists in
clinical practice. Recently, there have been growing research interests on mass
classification [5]. Yet hardly any work has been done for the classification of
breast calcifications using the latest BI-RADS standard.

BI-RADS categorization is different from the traditional multi-class classifi-
cation problem (e.g., natural object or lesion classification), in the sense that the
BI-RADS levels are essentially a series of ordinal and discrete labels, which are
inherently ordered according to the likelihood of malignancy. Directly applying
multi-class classification models with cross-entropy loss that does not consider
ordinal information is thus of inferior performance. In addition to the subjective
BI-RADS labels assessed by the radiologists, binary biopsy results are considered
to be the gold standard for lesion malignancy. Generally, these two sources of
labels are highly correlated: biopsy-proven benign/malignant calcifications are
expected to have smaller/larger BI-RADS scores.

In this work, we consider this label consistency and explicitly model it into
our ordinal classification loss function, to penalize BI-RADS predictions that
are inconsistent with biopsy results. More specifically, we design a malignancy
adjusted, weighted BI-RADS classification loss that penalizes heavily for incon-
sistent predictions (e.g., predicting BI-RADS 5 for a biopsy-proven benign lesion,
or BI-RADS 2 for a malignant lesion) and lightly for consistent predictions (e.g,
predicting BI-RADS 2 for a benign lesion and 5 for a malignant lesion). Besides,
since there might be multiple calcifications in an image patch, we design an at-
tention mechanism to pre-process the input patch such that the network could
focus on the specific calcification region to extract more discriminative features.
To evaluate the performance of the proposed approach, we also propose a new
metric that considers the malignancy of the calcification for a fair evaluation.

The main contribution of this work is three-fold: 1) we develop the first
six-class BI-RADS classification algorithm for each calcification in mammo-
grams, and 2) we design a specific attention-based ROIs and the malignancy
adjusted loss that effectively boosts the feature learning and model optimiza-
tion; 3) we introduce a novel metric, malignancy adjusted quadratic weighted
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Fig. 1. The generation of calcification attention ROIs.

Kappa (MAQWK), which is a general evaluation metric for rating tasks that
can be used in the medical imaging domain.

2 Methods

2.1 Method Overview

We propose a six-class (BI-RADS 2, 3, 4A, 4B, 4C, and 5) classification method
for each individual calcification in mammograms. We first obtain calcification
masks and BI-RADS categories annotated by radiologists, together with biopsy
results. Image patches containing calcifications are then extracted, and we use
masks to highlight the calcifications. In this way, the calcification patches with
attention ROIs are generated as input data as described in section 2.2. With ma-
lignancy information, we introduce a weighting coefficient to the loss function as
derived in section 2.3. The malignancy adjusted loss makes predicted BI-RADS
more acceptable in practical applications. Finally, we design a novel evaluation
metric for medical imaging rating tasks in section 2.4.

2.2 Attention-based Pre-processing

Fig. 1 shows the generation of calcification attention ROI patches. For an image
patch extracted from the original image and the corresponding binary mask, we
aim to predict the BI-RADS category for each individual calcification. As shown
in Fig. 1, an ROI mask for each calcification is split from the mask of each patch.
Each generated attention ROI consists of three channels: the first channel is the
original image patch, providing all breast tissue information within this patch;
the second channel is the element-wise product of the original patch and the
mask, highlighting all the calcifications and their spatial relations; and the third
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(a) Conventional MSE loss @ BI-RADS GT score = 0.4167
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(b) Benign @ BI-RADS GT score = 0.4167
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(c) Malignant @ BI-RADS GT score = 0.5833
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(d) Without malignancy @ BI-RADS GT score = 0.4167
=any positive value
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(e) Benign @ BI-RADS GT score = 0.4167
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(f) Malignant @ BI-RADS GT score = 0.5833
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Fig. 2. Malignancy adjusted BI-RADS loss. (a) is the conventional MSE loss, (b) and
(c) present the loss weighting of benign and malignant cases, respectively, and (e) and
(f) are the corresponding loss curves. For the case without malignancy, the loss curve
in (d) is identical to (a).

channel is the element-wise product of the original patch and one ROI mask,
focusing on the calcification to be classified. The attention-based ROIs with
such a design contain richer information from various perspectives, therefore, the
features extracted from these patches are more meaningful spatially to enhance
the classification performance.

We treat the classification for ratings as a regression task. The inputs to the
classification model are the generated attention ROI patches, and the output
is a scalar between [0, 1], representing the approximate risk probability. Conse-
quently, this scalar is linearly mapped to predict a BI-RADS category.

2.3 Malignancy Adjusted Loss

According to the BI-RADS standard, score 1 means no lesions, 0 indicates in-
complete information and requires follow-up, and 6 represents biopsy-proven
breast cancer. We exclude the above three clearly defined BI-RADS categories
and only consider the remaining six BI-RADS categories: 2, 3, 4A, 4B, 4C, and
5, for calcification classification as a rating problem. Let the number of calcifica-
tion classes be N4, and the cancer risk consistently increases from the first class
to the N th class. Thus, we convert the classification task into a linear regression
task. We uniformly divide the risk range [0, 1] into N segments, thus the value
range and center for the nth class range are [(n− 1)/N, n/N ] and (2n− 1)/2N .

4 Previous BI-RADS standard utilizes a single category 4 instead of subcategories 4A,
4B, 4C, hence the number of calcification classes reduces to N = 4.
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The regression loss using the conventional Mean Squared Error (MSE) is
defined as:

Loss(bgt, bpred) =
(
bgt − bpred

)2
, (1)

where bgt and bpred denote the BI-RADS risk score of ground truth and pre-
diction, respectively, and bgt is the center of the ground truth segment. We use
the following formula to measure if the bias direction of the predicted BI-RADS
score is consistent with the biopsy malignancy:

C(bgt, bpred,mgt) = −
(
bgt − bpred

) (
mgt −mmid

)
, (2)

where mgt is the binary biopsy malignancy, with 0 and 1 indicate benign and
malignant, respectively, mmid is an auxiliary constant, which is set to be 0.5.
If a mammogram does not have a biopsy result, mgt is assigned with the same
value as mmid. A positive C(·) indicates consistency and a negative C(·) repre-
sents inconsistency between the BI-RADS prediction and the biopsy label, while
C(·) = 0 indicates unavailable biopsy malignancy or an accurate BI-RADS pre-
diction. We give a higher penalty to the inconsistent case and a smaller one to
the consistent case. Therefore, we propose a malignancy-adjusted loss weight:

W (bgt, bpred,mgt) = α
C(bgt,bpred,mgt)

|C(bgt,bpred,mgt)|+ε , (3)

where α is a weighting coefficient with the value range (0, 1]. ε is a very small
positive constant to ensure that W (·) in Eq. 3 is continuous and differentiable.

The final weighted loss is denoted as:

Loss(bgt, bpred,mgt) = α
C(bgt,bpred,mgt)

|C(bgt,bpred,mgt)|+ε
(
bgt − bpred

)2
. (4)

Fig. 2 shows some examples of the proposed malignancy-adjusted MSE loss for
BI-RADS classification. We set loss weighting parameter α to 0.2 as default.

2.4 Evaluation metric

Quadratic weighted kappa (QWK) measures the agreement between two ratings
[19]. This metric typically varies from 0 (random agreement between raters) to
1 (complete agreement between raters). A negative value means the classifier
performs worse than random choice. The quadratic weighted kappa is calculated
between the scores assigned by the human rater and the predicted scores. QWK
is defined as:

k = 1 −
∑

i,j Wi,jOi,j∑
i,j Wi,jEi,j

, (5)

where W is a N × N matrix and its element Wi,j = (i− j)
2

is the weighted
cost associated with misclassifying label i as label j, and matrices O and E are
the confusion matrix and the expected rating matrix [10], respectively.

Although QWK has been commonly used in medical image rating tasks, it
is still not a proper metric for malignancy rating. As the examples presented
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Table 1. A comparison of evaluation metrics on two classifiers. Consider an example
list of six samples with various BI-RADS categories, all samples are correctly predicted
except for the one with BI-RADS 4A. Both calcification example cases 1 and 2 are with
the BI-RADS category 4A, and final confirmed as malignant and benign, respectively.

Cases Classifiers
Predicted
BI-RADS

QWK

MAQWK

MAQWK-M MAQWK-B

Case1 Classifier 1 2 0.9024 0.8356 -
(4A, Malignant) Classifier 2 4C 0.8919 1.0 -

Case 2 Classifier 1 4C 0.8919 - 0.8153
(4A, Benign) Classifier 2 2 0.9024 - 1.0

in Table 1, the classifiers 1 and 2 predict case 1 (malignant, BI-RADS 4A) as
BI-RADS 2 and 4C. Because these two predictions have the same distance to the
ground truth, they have very close QWK values. However, in clinical settings,
BI-RADS 2 is considered as benign and patients with BI-RADS 4C are required
to conduct further actions to confirm its malignancy. Thus, classifier 1 may result
in missed diagnosis for case 1. Likewise, classifier 1 may also lead to a false alarm
for case 2. Although classifier 2 performs much better than classifier 1, they have
extremely close QWK values.

For a more appropriate evaluation, we propose a malignancy-adjusted quadratic
weighted kappa (MAQWK) and define the malignancy adjusted weighting ma-
trix as:

Wc = W ∗ Iu/l, (6)

where “c” is an indicator of either “m” or “b”, indicating malignant/benign case,

respectively. Wc represents the designed weighting matrix, Iu/l is an unit upper
triangular matrix Iu for malignant or an unit lower triangular matrix Il for
benign. The matrices Iu and Il find out the elements of higher/lower predicted
BI-RADS cases in the confusion matrix, respectively. The operator ∗ means the
element-wise product, therefore, Wc is either an upper or lower triangular part
of the original quadratic weight matrix W. In this way, Wm considers only the
cases where the predicted BI-RADS is lower than the ground truth for malignant
cases, and Wb considers only the cases where the predicted BI-RADS is higher
than the ground truth for benign cases. MAQWK is defined as:

kc = 1 −
∑

i,j W
c
i,jO

c
i,j∑

i,j W
c
i,jE

c
i,j

, (7)

where Oc represents either Om, which is the confusion matrix computed with
only malignant cases, or Ob, which is the counterpart of benign cases. Like-
wise, Em and Eb are corresponding expected matrices for malignant and benign
cases, respectively. We denote km and kb as the malignancy adjusted quadratic
weighted kappa for malignant (MAQWK-M) and benign (MAQWK-B), respec-
tively. Table 1 shows that classifier 2 achieves higher values than classifier 1 in
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Table 2. Number of calcification in each BI-RADS categories.

BI-RADS 2 3 4A 4B 4C 5 Total

Number 3180 1751 323 241 778 902 7175

terms of both MAQWK-M and MAQWK-B, implying a more reasonable metric
for this task.

3 Experimental Setting

3.1 Datasets

We collaborated with a hospital to build a dataset for this task5. Mammograms
were collected with two vendors’ digital mammography machines, the SIEMENS
Mammomat Inspiration (Germany) and the GIOTTO Image MD (Italy). Two
radiologists delineated calcification regions and labeled the corresponding BI-
RADS categories, before being finally checked by an experienced radiologist. The
biopsy results indicating benign or malignant were confirmed by histopathology.
The dataset consists of 708 patients with 1776 mammograms containing cal-
cifications. There were 2731 malignant and 5426 benign calcifications, and the
numbers of BI-RADS categories are listed in Table 2, where BI-RADS 0 and 6
are excluded. The patients were randomly split by 3:1:1 as the training, valida-
tion and test sets. A sliding window moved in mammograms with a step of 100
pixels to extract the image and mask patches, each patch was 400 × 400 pixels.

3.2 Implementation details

In this work, we use the ResNet-18 [9] as our DNN backbone (pre-trained on
ImageNet). First, an attention ROI is created from original image and mask as
the input of backbone, and the output of backbone is a cancer risk score. In the
training stage, the obtained risk score is directly used for computing the loss.
In the inference stage, if this score falls in the range [(n − 1)/6, n/6], then the
predicted BI-RADS category is the nth category of the list [2, 3, 4A, 4B, 4C, 5].

We applied SGD with momentum as the optimizer for training. The initial
learning rate was 0.001 and decreases by 0.3 every 10 epochs, with momentum as
0.99 and batch size as 32. A sampling strategy was used to balance the number
of various BI-RADS classes in each mini-batch. The training stopped after 50
epochs. The method was implemented on a Linux workstation with two NVIDIA
V100 GPUs (16G memory each).
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Table 3. Performance comparison of various methods: standard multi-class (MC) clas-
sification, the regression-based method with MSE loss and the proposed MAMSE loss,
and the impact of attention ROIs.

Method QWK

MAQWK

MAQWK-M MAQWK-B

MC 0.6583 0.1121 -0.0027
MSE 0.6877 0.1544 0.0302
MAMSE 0.7657 0.1468 0.1054
MC + attention ROI 0.8216 0.2517 0.2493
MSE + attention ROI 0.8650 0.2858 0.3242
MAMSE + attention ROI (Proposed) 0.8870 0.3489 0.3786

4 Experimental Results

Table 3 presents the performance comparison of standard multi-class (MC) clas-
sification, the regression-based method with standard MSE loss and with the
proposed MAMSE loss. To show the impact of the proposed attention ROIs,
we also compare them with the original gray image patches as the input for all
models. For a fair comparison, all methods used the same backbone and training
settings. It is clear that the introduced attention strategy remarkably promotes
classification performance in terms of QWK and MAQWK for all methods. More-
over, the designed specific loss can further improve the performance, achieving
the best results.

Fig. 3 shows the performance of the proposed method with different choices
of loss weighting parameter α. The proposed approach is able to obtain relatively
stable high performance when α is between 0.2 and 0.5. QWK and MAQWK
fluctuate when α is approaching 0, and both decline steadily with the increase
of α toward 1. The proposed method degrades to conventional MSE-based re-
gression when α is 1.

5 Discussion and Conclusion

The core contributions of the proposed model are the designed loss and atten-
tion mechanism, which are independent of architecture. Hence, without loss of
generality, we only used ResNet as the backbone to evaluate the efficacy of our
method in this work. Other advanced architectures can be directly employed as
a backbone, and similar advantages of the proposed modules can be expected.

The designed malignancy adjusted loss and the corresponding evaluation
metrics consider the practical needs in clinical settings. They can be easily ap-
plied to other medical image rating tasks, such as for liver (LI-RADS) [15],
gynecology (GI-RADS) [3], colonography (C-RADS) [16], diabetic retinopathy

5 This retrospective case-control study was approved by the ethics review and institu-
tional review board, which waived the requirement for individual informed consent.
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Fig. 3. Plots of metrics of the proposed method with different choices of α.

diagnosis [8], etc. The incorporation of the malignancy-based adjustment is an
intuitive and interpretable way to transfer the domain knowledge and special
request from the professionals to the DL framework. The loss is also flexible,
accommodating the samples without malignancy information by assigning the
pseudo label mmid.

In this paper, we proposed a specific BI-RADS classification method and
an evaluation metric for mammographic calcifications. The developed attention
strategy and malignancy adjusted MSE loss effectively improve the classifica-
tion performance. It shows great potential to be expanded to other tasks and
domains. We have invited the radiologists from our collaborating hospitals to
further evaluate its practical efficacy and other use cases.
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